• Почему нужен driver dlya led 3w. Светодиодный драйвер: принцип работы и правила подбора. Подключение RGB LED

    Широкое распространение светодиодов повлекло за собой массовое производство блоков питания для них. Такие блоки называются драйверами. Основной их особенностью является то, что они способны стабильно поддерживать на выходе заданный ток. Другими словами, драйвер для светодиодов (LED) – это источник тока для их питания.

    Назначение

    Поскольку светодиод — это полупроводниковые элементы, ключевой характеристикой, определяющей яркость их свечения, является не напряжение, а ток. Чтобы они гарантированно отработали заявленное количество часов, необходим драйвер, — он стабилизирует ток, протекающий через цепь светодиодов. Возможно использование маломощных светоизлучающих диодов и без драйвера, в этом случае его роль выполняет резистор.

    Применение

    Драйверы применяются как при питании светодиода от сети 220В, так и от источников постоянного напряжения 9-36 В. Первые используются при освещении помещений светодиодными лампами и лентами, вторые чаще встречаются в автомобилях, велосипедных фарах, переносных фонарях и т.д.

    Принцип работы

    Как уже было сказано, драйвер – это источник тока. Его отличия от источника напряжения проиллюстрированы ниже.

    Источник напряжения создает на своем выходе некоторое напряжение, в идеале не зависящее от нагрузки.

    Например, если подключить к источнику напряжением 12 В резистор 40 Ом, через него пойдет ток 300 мА.

    Если подключить параллельно два резистора, суммарный ток составит уже 600 мА при том же напряжении.

    Драйвер же поддерживает на своем выходе заданный ток. Напряжение при этом может изменяться.

    Подключим так же резистор 40 Ом к драйверу 300 мА.

    Драйвер создаст на резисторе падение напряжения 12 В.

    Если подключить параллельно два резистора, ток по-прежнему будет 300 мА, а напряжение упадет до 6 В:

    Таким образом, идеальный драйвер способен обеспечить нагрузке номинальный ток вне зависимости от падения напряжения. То есть светодиод с падением напряжения 2 В и током 300 мА будет гореть так же ярко, как и светодиод напряжением 3 В и током 300 мА.

    Основные характеристики

    При подборе нужно учитывать три основных параметра: выходное напряжение, ток и потребляемая нагрузкой мощность.

    Напряжение на выходе драйвера зависит от нескольких факторов:

    • падение напряжения на светодиоде;
    • количество светодиодов;
    • способ подключения.

    Ток на выходе драйвера определяется характеристиками светодиодов и зависит от следующих параметров:

    • мощность светодиодов;
    • яркость.

    Мощность светодиодов влияет на потребляемый ими ток, который может варьироваться в зависимости от требуемой яркости. Драйвер должен обеспечить им этот ток.

    Мощность нагрузки зависит от:

    • мощности каждого светодиода;
    • их количества;
    • цвета.

    В общем случае потребляемую мощность можно рассчитать как

    где Pled — мощность светодиода,

    N — количество подключаемых светодиодов.

    Максимальная мощность драйвера не должна быть меньше.

    Стоит учесть, что для стабильной работы драйвера и предотвращения выхода его из строя следует обеспечить запас по мощности хотя бы 20-30%. То есть должно выполняться следующее соотношение:

    где Pmax — максимальная мощность драйвера.

    Кроме мощности и количества светодиодов, мощность нагрузки зависит еще от их цвета. Светодиоды разных цветов имеют разное падение напряжения при одинаковом токе. Например, красный светодиод XP-E обладает падением напряжения 1.9-2.4 В при токе 350 мА. Средняя потребляемая им мощность таким образом составляет около 750 мВт.

    У XP-E зеленого цвета падение 3.3-3.9 В при том же токе, и его средняя мощность составит уже около 1.25 Вт. То есть драйвером, рассчитанным на 10 ватт, можно питать либо 12-13 красных светодиодов, либо 7-8 зеленых.

    Как подобрать драйвер для светодиодов. Способы подключения LED

    Допустим, имеется 6 светодиодов с падением напряжения 2 В и током 300 мА. Подключить их можно различными способами, и в каждом случае потребуется драйвер с определенными параметрами:


    Соединять таким образом параллельно 3 и более светодиодов недопустимо, так как при этом через них может пойти слишком большой ток, в результате чего они быстро выйдут из строя.

    Обратите внимание, что во всех случаях мощность драйвера составляет 3.6 Вт и не зависит от способа подключения нагрузки.

    Таким образом, целесообразнее выбирать драйвер для светодиодов уже на этапе закупки последних, предварительно определив схему подключения. Если же сначала приобрести сами светодиоды, а потом подбирать к ним драйвер, это может оказаться нелегкой задачей, поскольку вероятность того, что Вы найдете именно тот источник питания, который сможет обеспечить работу именно этого количества светодиодов, включенных по конкретной схеме, невелика.

    Виды

    В общем случае драйверы для светодиодов можно разделить на две категории: линейные и импульсные.

    У линейного выходом служит генератор тока. Он обеспечивает стабилизацию выходного тока при нестабильном входном напряжении; причем подстройка происходит плавно, не создавая высокочастотных электромагнитных помех. Они просты и дешевы, но невысокий КПД (менее 80%) ограничивает сферу их применения маломощными светодиодами и лентами.

    Импульсные представляют собой устройства, создающие на выходе серию высокочастотных импульсов тока.

    Обычно они работают по принципу широтно-импульсной модуляции (ШИМ), то есть среднее значение выходного тока определяется отношением ширины импульсов к периоду их следования (эта величина называется коэффициентом заполнения).

    На диаграмме выше показан принцип работы ШИМ-драйвера: частота импульсов остается постоянной, но изменяется коэффициент заполнения от 10% до 80%. Это ведет к изменению среднего значения тока I cp на выходе.

    Такие драйверы получили широкое распространение благодаря компактности и высокому КПД (около 95%). Основным недостатком является больший по сравнению с линейными уровень электромагнитных помех.

    Светодиодный драйвер на 220 В

    Для включения в сеть 220 В выпускаются как линейные, так и импульсные. Существуют драйверы с гальванической развязкой от сети и без нее. Основными преимуществами первых являются высокий КПД, надежность и безопасность.

    Без гальванической развязки обычно дешевле, но менее надежны и требуют осторожности при подключении, поскольку есть вероятность поражения током.

    Китайские драйверы

    Востребованность драйверов для светодиодов способствует их массовому производству в Китае. Эти устройства представляют собой импульсные источники тока, обычно на 350-700 мА, часто не имеющие корпуса.

    Китайский драйвер для светодиода 3w

    Основные их достоинства – низкая цена и наличие гальванической развязки. Недостатки следующие:

    • низкая надежность из-за использования дешевых схемных решений;
    • отсутствие защиты от перегрева и колебаний в сети;
    • высокий уровень радиопомех;
    • высокий уровень пульсаций на выходе;
    • недолговечность.

    Срок службы

    Обычно срок службы драйвера меньше, чем у оптической части – производители дают гарантию на 30000 часов работы. Это связано с такими факторами, как:

    • нестабильность сетевого напряжения;
    • перепады температур;
    • уровень влажности;
    • загруженность драйвера.

    Самым слабым звеном светодиодного драйвера являются сглаживающие конденсаторы, которые имеют тенденцию к испарению электролита, особенно в условиях повышенной влажности и нестабильного питающего напряжения. В результате уровень пульсаций на выходе драйвера повышается, что негативно сказывается на работе светодиодов.

    Также на срок службы влияет неполная загруженность драйвера. То есть если он, рассчитан на 150 Вт, а работает на нагрузку 70 Вт, половина его мощности возвращается в сеть, вызывая ее перегрузку. Это провоцирует частые сбои питания. Рекомендуем почитать про .

    Схемы драйверов (микросхемы) для светодиодов

    Многие производители выпускают специализированные микросхемы драйверов. Рассмотрим некоторые из них.

    ON Semiconductor UC3845 – импульсный драйвер с выходным током до 1А. Схема драйвера для светодиода 10w на этой микросхеме приведена ниже.

    Supertex HV9910 – очень распространенная микросхема импульсного драйвера. Ток на выходе не превышает 10 мА, не имеет гальванической развязки.

    Простой драйвер тока на этой микросхеме представлен ниже.

    Texas Instruments UCC28810. Сетевой импульсный драйвер, имеет возможность организовать гальваническую развязку. Выходной ток до 750 мА.

    Еще одна микросхема этой фирмы, — драйвер для питания мощных светодиодов LM3404HV — описывается в этом видео:

    Устройство работает по принципу резонансного преобразователя типа Buck Converter, то есть функция поддержания требуемого тока здесь частично возложена на резонансную цепь в виде катушки L1 и диода Шоттки D1 (типовая схема приведена ниже). Также имеется возможность задания частоты коммутации подбором резистора R ON .

    Maxim MAX16800 – линейная микросхема, работает при малых напряжениях, поэтому на ней можно построить драйвер 12 вольт. Выходной ток – до 350 мА, поэтому может использоваться как драйвер питания для мощного светодиода, фонарика, и т.д. Есть возможность диммирования. Типовая схема и структура представлены ниже.

    Заключение

    Светодиоды гораздо более требовательны к источнику питания, чем другие источники света. Например, превышение тока на 20% для люминесцентной лампы не повлечет за собой серьезного ухудшения характеристик, для светодиодов же срок службы сократится в несколько раз. Поэтому выбирать драйвер для светодиодов следует особенно тщательно.

    Схемы драйверов светодиодов для самостоятельного изготовления, подробное описание. Подробное описание как сделать драйвер питания светодиодов своими руками.

    Прежде всего для пайки драйвера понадобятся инструменты и материалы:

    Паяльник мощностью 25-40 Вт. Можно использовать и большей мощности, но при этом возрастает опасность перегрева элементов и выхода их из строя. Лучше всего использовать паяльник с керамическим нагревателем и необгораемым жалом, обычное медное жало довольно быстро окисляется, и его приходится чистить.

    Припой. Наиболее распространенным является легкоплавкий оловянно-свинцовый припой ПОС-61. Припои без свинца менее вредны при вдыхании паров во время пайки, но обладают более высокой температурой плавления при меньшей текучести и склонностью к деградации шва со временем.

    Флюс для пайки (канифоль, глицерин, ФКЭТ, и т.д.). Желательно использовать именно нейтральный флюс, - в отличие от активных флюсов (ортофосфорная и соляная кислоты, хлористый цинк и др.), он со временем не окисляет контакты и менее токсичен. Вне зависимости от используемого флюса после сборки устройства его лучше отмыть с помощью спирта. Для активных флюсов эта процедура является обязательной, для нейтральных - в меньшей степени.

    Плоскогубцы для сгибания выводов.

    Кусачки для обкусывания длинных концов выводов и проводов.

    Монтажные провода в изоляции. Лучше всего подойдут многожильные медные провода сечением от 0.35 до 1 мм2.

    Мультиметр для контроля напряжения в узловых точках.

    Изоляционная лента.

    Небольшая макетная плата из стеклотекстолита. Достаточно будет платы размерами 60х40 мм.

    Схема драйвера для светодиода 1 Вт.

    Одна из самых простых схем для питания мощного светодиода представлена на рисунке ниже:

    Как видно, помимо светодиода в нее входят всего 4 элемента: 2 транзистора и 2 резистора.

    В роли регулятора тока, проходящего через led, здесь выступает мощный полевой n-канальный транзистор VT2. Резистор R2 определяет максимальный ток, проходящий через светодиод, а также работает в качестве датчика тока для транзистора VT1 в цепи обратной связи.

    Чем больший ток проходит через VT2, тем большее напряжение падает на R2, соответственно VT1 открывается и понижает напряжение на затворе VT2, тем самым уменьшая ток светодиода. Таким образом достигается стабилизация выходного тока.

    Питание схемы осуществляется от источника постоянного напряжения 9 - 12 В, ток не менее 500 мА. Входное напряжение должно быть минимум на 1-2 В больше падения напряжения на светодиоде.

    Резистор R2 должен рассеивать мощность 1-2 Вт, в зависимости от требуемого тока и питающего напряжения. Транзистор VT2 – n-канальный, рассчитанный на ток не менее 500 мА: IRF530, IRFZ48, IRFZ44N. VT1 – любой маломощный биполярный npn: 2N3904, 2N5088, 2N2222, BC547 и т.д. R1 – мощностью 0.125 - 0.25 Вт сопротивлением 100 кОм.

    Ввиду малого количества элементов, сборку можно производить навесным монтажом:

    Еще одна простая схема драйвера на основе линейного управляемого стабилизатора напряжения LM317:

    Здесь входное напряжение может быть до 35 В. Сопротивление резистора можно рассчитать по формуле:

    где I – сила тока в амперах.

    В этой схеме на LM317 будет рассеиваться значительная мощность при большой разнице между питающим напряжением и падением на светодиоде. Поэтому ее придется разместить на небольшом . Резистор также должен быть рассчитан на мощность не менее 2 Вт.

    Более наглядно эта схема рассмотрена в следующем видео:

    Здесь показано, как подключить мощный светодиод, используя аккумуляторы напряжением около 8 В. При падении напряжения на LED около 6 В разница получается небольшая, и микросхема нагревается несильно, поэтому можно обойтись и без радиатора.

    Обратите внимание, что при большой разнице между напряжением питания и падением на LED необходимо ставить микросхему на теплоотвод.

    Мощный драйвер с входом ШИМ.

    Ниже показана схема для питания мощных светодиодов:

    Драйвер построен на сдвоенном компараторе LM393. Сама схема представляет собой buck-converter, то есть импульсный понижающий преобразователь напряжения.

    Особенности драйвера:

    • Напряжение питания: 5 - 24 В, постоянное;
    • Выходной ток: до 1 А, регулируемый;
    • Выходная мощность: до 18 Вт;
    • Защита от КЗ по выходу;
    • Возможность управления яркостью при помощи внешнего ШИМ сигнала.

    Принцип действия.

    Резистор R1 с диодом D1 образуют источник опорного напряжения около 0.7 В, которое дополнительно регулируется переменным резистором VR1. Резисторы R10 и R11 служат датчиками тока для компаратора. Как только напряжение на них превысит опорное, компаратор закроется, закрывая таким образом пару транзисторов Q1 и Q2, а те, в свою очередь, закроют транзистор Q3. Однако индуктор L1 в этот момент стремится возобновить прохождение тока, поэтому ток будет протекать до тех пор, пока напряжение на R10 и R11 не станет меньше опорного, и компаратор снова не откроет транзистор Q3.

    Пара Q1 и Q2 выступает в качестве буфера между выходом компаратора и затвором Q3. Это защищает схему от ложных срабатываний из-за наводок на затворе Q3, и стабилизирует ее работу.

    Вторая часть компаратора (IC1 2/2) используется для дополнительной регулировки яркости при помощи ШИМ. Для этого управляющий сигнал подается на вход PWM: при подаче логических уровней ТТЛ (+5 и 0 В) схема будет открывать и закрывать Q3. Максимальная частота сигнала на входе PWM - порядка 2 КГц. Также этот вход можно использовать для включения и отключения устройства при помощи пульта ДУ.

    D3 представляет собой диод Шоттки, рассчитанный на ток до 1 А. Если не удастся найти именно диод Шоттки, можно использовать импульсный диод, например FR107, но выходная мощность тогда несколько снизится.

    Максимальный ток на выходе настраивается подбором R2 и включением или исключением R11. Так можно получить следующие значения:

    • 350 мА (LED мощностью 1 Вт): R2=10K, R11 отключен,
    • 700 мА (3 Вт): R2=10K, R11 подключен, номинал 1 Ом,
    • 1А (5Вт): R2=2,7K, R11 подключен, номинал 1 Ом.

    В более узких пределах регулировка производится переменным резистором и ШИМ – сигналом.

    Сборка и настройка драйвера.

    Монтаж компонентов драйвера производится на макетной плате. Сначала устанавливается микросхема LM393, затем самые маленькие компоненты: конденсаторы, резисторы, диоды. Потом ставятся транзисторы, и в последнюю очередь переменный резистор.

    Размещать элементы на плате лучше таким образом, чтобы минимизировать расстояние между соединяемыми выводами и использовать как можно меньше проводов в качестве перемычек.

    При соединении важно соблюдать полярность подключения диодов и распиновку транзисторов, которую можно найти в техническом описании на эти компоненты. Также диоды можно проверить с помощью мультиметра в режиме измерения сопротивления: в прямом направлении прибор покажет значение порядка 500-600 Ом.

    Для питания схемы можно использовать внешний источник постоянного напряжения 5-24 В или аккумуляторы. У батареек 6F22 («крона») и других слишком маленькая емкость, поэтому их применение нецелесообразно при использовании мощных LED.

    После сборки нужно подстроить выходной ток. Для этого на выход припаиваются светодиоды, а движок VR1 устанавливается в крайнее нижнее по схеме положение (проверяется мультиметром в режиме «прозвонки»). Далее на вход подаем питающее напряжение, и вращением ручки VR1 добиваемся требуемой яркости свечения.

    Список элементов:

    Подведём итог.

    Первые две из рассмотренных схем очень просты в изготовлении, но они не обеспечивают защиты от короткого замыкания и обладают довольно низким КПД. Для долговременного использования рекомендуется третья схема на LM393, поскольку она лишена этих недостатков и обладает более широкими возможностями по регулировке выходной мощности.

    Светодиодная иллюминация является относительно новым и перспективным направлением в обустройстве интерьеров и экстерьеров. При этом большая ответственность заключается в выборе комплектующих для такого искусственного источника. Правильно выбранная электроника, к которой относится и led driver, обеспечивает долговечную и бесперебойную эксплуатацию всего комплекса приборов.

    Особенности работы

    Схема светодиодного подключения подразумевает наличие источника тока постоянного типа. Соответственно к имеющимся лентам нужен источник питания не 220 В электросети, а значительно меньший уровень постоянного тока. Привести все к норме помогает led driver - специальный выпрямитель.

    Для каждой цепи характерны физические параметры:

    • своя мощность, Вт;
    • сила тока, А;
    • напряжение, В.

    Поэтому необходимо рассчитать и выбрать соответствующий светодиодный драйвер. Нередко пользователи сталкиваются с тем, что готов проект схемы подключения, имеются в наличии светодиоды, а подобрать или купить оптимальный драйвер питания светодиодов нет возможности.

    Фактически блок питания представляет собой небольшой по габаритам прибор, выдающий на контактах установленное производителями напряжение и силу тока. В идеале эти параметры не зависят от применяемой к нему нагрузки.

    Подключение двух резисторов параллельно

    Зная законы физики, можно рассчитать, что при подключении к источнику тока с напряжением 12В потребителя с сопротивлением 40 Ом (в качестве последнего может выступать резистор), то по цепи будет протекать 0,3 А. Если же в схеме будет участвовать пара таких параллельных резисторов, то ампераж поднимется до 0,6 А.

    Драйвер для светодиода работает на поддержание стабильной силы тока. Значение напряжения в таком случае способно варьироваться. При подключении к нему во время выдачи 0,3 А резистора на 40 Ом, потребитель будет питаться напряжением в 12 В. Если же добавить параллельно второй резистор, то напряжение упадет до 6 В, а сила тока останется 0,3А.

    Самые лучшие драйверы светодиодов обеспечивают любой нагрузке установленный производителями параметр тока, ни взирая на значительное падение напряжения. При этом потребители при опускании значения напряжения до 2 В и получении 0,3 А будут такими же яркими, как и при 3 В и 0,3 А.

    Параметры для выбора

    Грамотно выбрать драйвер для светодиодной ленты помогают технические параметры изделия. Одним из них является мощность. Она рассчитывается для любого источника питания. Мощность напрямую зависит от параметров компонентов и их количества. Допустимое максимальное значение указано на лицевой стороне упаковки или тыльной части самого изделия.

    Мощность для силовых источников обязательно подбирается большей, чем имеющееся значение цепи. В противном случае произойдет повышение температуры блока.

    Также обращаем внимание на силу тока и напряжение. Каждый завод маркирует свои изделия, указывая номинальный ампераж. Для светодиодов своими силами подбираем соответствующий светодиодный драйвер. Наиболее популярными являются диоды, потребляющие 0,35 А или 0,7 А. При этом ленты производители предлагают 12 В либо 24 В. Маркировка на блоках питания проводится в виде напряжения и мощности.

    Так как драйверы для светодиодов могут располагаться сейчас в любых условиях, то важно обратить внимание на влагозащищенность и класс герметичности.

    Нередко приходится применять диоды во влажных условиях, например рядом с бассейном или непосредственно в нем. Тогда требуется обращать внимание на показатель IP, который указывает защиту от проникновения влаги. Значение IPX6 демонстрирует возможность временного затопления, а IPX9 позволяет выдерживать значительное давление.

    ВИДЕО: Светодиоды - питание (LED-драйверы)

    Варианты подключения

    Разберем несколько примеров, как подобрать драйвер для светодиодов. Можно разобрать все на схеме из шести диодов. Они могут подключаться несколькими способами, давая нужный результат.

    Последовательно

    В подобном случае выбираем источник с 12 В напряжения и током 0,3 А. Основное достоинство метода заключено в том, что по всему контуру к потребителям поступает равный ампераж. При этом все элементы испускают одинаковую яркость. Минусом подключения является необходимость при значительном увеличении диодов иметь в наличии источник с большим номинальным напряжением.

    Параллельно

    В такой ситуации достаточно светодиодного драйвера, выдающего на контактах 6 В. Однако, ток, который потреблять будет схема повысится в два раза до 0,6 А в сравнении с аналогичным последовательным подключением. Минусы заключаются в том, что токи протекающие для каждого участка, физически будут иметь отличия из-за физических параметров диодов. В результате получится небольшая разница в свечении участков.

    В данных схемах, собранных своими руками, можно воспользоваться помощью драйверов для светодиодов, аналогичных параллельному соединению. При этом установится яркость равная для каждого участка цепи. В схеме имеется существенный минус. Он очевиден, так как при старте из-за небольших отличий в характеристиках какие-то элементы запустятся раньше других. В это время по ним станет поступать ток удвоенного номинала. Производители допускают кратковременное превышение значения, но применять на практике данную схему все же не рекомендуется. Перед тем, как подобрать драйвер для светодиодов, необходимо оценить все риски.

    Соединять подобным образом более двух диодов ни в коем случае нельзя, ведь по каким-то из них пойдет чрезвычайно большой ампераж, что приведет к мгновенному выходу их из строя.

    В приведенных примерах светодиодный драйвер брался в каждом случае с мощностью в 3,6 Вт. Это значение не влияло на способы подключения. Исходя из реального примера видно, что подбирать источник питания необходимо в процессе приобретения диодов. Вероятность выбора на следующих этапах существенно снижает шансы найти нужный блок.

    Классификация элементов

    На прилавках можно обнаружить два основных типа драйверов для светодиодов:

    • импульсный тип
    • линейный.

    Первые являются приборами, обеспечивающими на выходе каскад импульсов высокой частоты. Последнее поколение их использует принцип широтно-импульсной модуляции. Фактически усредненный параметр силы тока рассчитывается как отношение ширины импульса к их периоду. Параметр определяется коэффициентом заполнения.

    Линейные на выходе обеспечивают значение от генератора тока. Формируется стабилизация тока, а напряжение будет вариабельным. Все настройки проводятся в плавном режиме без образования электромагнитных высокочастотных помех. Даже при относительно небольшом КПД (около 85%) и простоте конструкции их сфера деятельности ограничивается маломощными лентами или светодиодными лампами.

    ШИМ-драйверы являются более широко популярными из-за своих позитивных эксплуатационных характеристики:

    • длительный срок работы;
    • КПД до 95%;
    • минимальные габариты.

    Минусом для последних является высокий уровень помех, в отличие от линейных.

    Дифференцируются драйверы по наличию или отсутствию гальванической развязки. В первом случае обеспечивается больший КПД, повышенная надежность и достаточная безопасность.

    Для подключения к стандартной электросети светодиодов могут использоваться и тот, и другой тип драйверов, но преимущественными являются именно те, где есть гальваническая развязка. Именно она отвечает за безопасную эксплуатацию ламп. Если таковой развязки нет, всегда есть риск поражения током.

    Срок эксплуатации

    Даже сами производители заявляют о том, что драйвер служит меньше, чем оптика. Если последняя рассчитана на 30 тысяч часов, то выпрямитель в лучшем случае проработает 1000 часов. Связан такой разрыв во времени со следующими обстоятельствами:

    • перепады напряжения в электросети как в большую, так и в меньшую сторону более чем на 5%;
    • разница рабочей температуры в процессе работы;
    • повышенная влажность, если речь идет о таких помещениях;
    • интенсивность - чем больше работает и меньше выключается, тем длительнее срок работы.

    Первое, что принимает на себя основной удар - сглаживающий конденсатор, у которых при повышенной влажности, температуре и при скачках напряжения начинает интенсивно испаряться электролит. При его недостатке уровень пульсаций увеличивает, что и приводит к выходу из строя лед-драйвера.

    Но самое интересное, что сокращает срок работы неполная загруженность. Если вы купили элемент на 150 ватт, а нагрузка не превышает 70, оставшиеся 80 будут возвращаться в сеть и провоцировать ее перегруз. Всегда правильно выбирайте рабочие элементы, чтобы максимально сопоставить эффективность и реальные условия.

    ВИДЕО: Простой источник питания для светодиодов

    Лидирующую позицию среди наиболее эффективных источников искусственного света занимают сегодня светодиоды. Это во многом является заслугой качественных источников питания для них. При работе совместно с правильно подобранным драйвером, светодиод длительно сохранит устойчивую яркость света, а срок службы светодиода окажется очень-очень долгим, измеряемым десятками тысяч часов.

    Таким образом, правильно подобранный драйвер для светодиодов — залог долгой и надежной работы источника света. И в этой статье мы постараемся раскрыть тему того, как правильно выбрать драйвер для светодиода, на что обратить внимание, и какие вообще они бывают.

    Драйвером для светодиодов называют стабилизированный источник питания постоянного напряжения или постоянного тока. Вообще, изначально, светодиодный драйвер — это , но сегодня даже источники постоянного напряжения для светодиодов называют светодиодными драйверами. То есть можно сказать, что главное условие — это стабильные характеристики питания постоянным током.

    Электронное устройство (по сути — стабилизированный импульсный преобразователь) подбирается под необходимую нагрузку, будь то набор отдельных светодиодов, собранных в последовательную цепочку, или параллельный набор таких цепочек, либо может быть лента или вообще один мощный светодиод.

    Стабилизированный источник питания постоянного напряжения хорошо подойдет , LED-линеек, или для запитки набора из нескольких мощных светодиодов, соединенных по одному параллельно, — то есть когда номинальное напряжение светодиодной нагрузки точно известно, и достаточно только подобрать блок питания на номинальное напряжение при соответствующей максимальной мощности.

    Обычно это не вызывает проблем, например: 10 светодиодов на напряжение 12 вольт, по 10 ватт каждый, - потребуют 100 ваттный блок питания на 12 вольт, рассчитанный на максимальный ток в 8,3 ампера. Останется подрегулировать напряжение на выходе при помощи регулировочного резистора сбоку, - и готово.

    Для более сложных светодиодных сборок, особенно когда соединяется несколько светодиодов последовательно, необходим не просто блок питания со стабилизированным выходным напряжением, а полноценный светодиодный драйвер — электронное устройство со стабилизированным выходным током. Здесь ток является главным параметром, а напряжение питания светодиодной сборки может автоматически варьироваться в определенных пределах.

    Для ровного свечения светодиодной сборки, необходимо обеспечить номинальный ток через все кристаллы, однако падение напряжения на кристаллах может у разных светодиодов отличаться (поскольку немного различаются ВАХ каждого из светодиодов в сборке), - поэтому напряжение не будет на каждом светодиоде одним и тем же, а вот ток должен быть одинаковым.

    Светодиодные драйверы выпускаются в основном на питание от сети 220 вольт или от бортовой сети автомобиля 12 вольт. Выходные параметры драйвера указываются в виде диапазона напряжений и номинального тока.

    Например, драйвер с выходом на 40-50 вольт, 600 мА позволит подключить последовательно четыре 12 вольтовых светодиода мощностью по 5-7 ватт. На каждом светодиоде упадет приблизительно по 12 вольт, ток через последовательную цепочку составит ровно по 600 мА, при этом напряжение 48 вольт попадает в рабочий диапазон драйвера.

    Драйвер для светодиодов со стабилизированным током — это универсальный блок питания для светодиодных сборок, причем эффективность его получается довольно высокой и вот почему.

    Мощность светодиодной сборки — критерий важный, но чем обусловлена эта мощность нагрузки? Если бы ток был не стабилизированным, то значительная часть мощности рассеялась бы на выравнивающих резисторах сборки, то есть КПД оказался бы низким. Но с драйвером, обладающим стабилизацией по току, выравнивающие резисторы не нужны, вот и КПД источника света получится в результате очень высоким.

    Драйверы разных производителей отличаются между собой выходной мощностью, классом защиты и применяемой элементной базой. Как правило, в основе — , со стабилизацией выхода по току и с защитой от короткого замыкания и перегрузки.

    Питание от сети переменного тока 220 вольт или постоянного тока с напряжением 12 вольт. Самые простые компактные драйверы с низковольтным питанием могут быть выполнены на одной универсальной микросхеме, но надежность их, про причине упрощения, ниже. Тем не менее, такие решения популярны в автотюнинге.

    Выбирая драйвер для светодиодов следует понимать, что применение резисторов не спасает от помех, как и применение упрощенных схем с гасящими конденсаторами. Любые скачки напряжения проходят через резисторы и конденсаторы, и нелинейная ВАХ светодиода обязательно отразится в виде скачка тока через кристалл, а это вредно для полупроводника. Линейные стабилизаторы — тоже не лучший вариант в плане защищенности от помех, к тому же эффективность таких решений ниже.

    Лучше всего, если точное количество, мощность, и схема включения светодиодов будут заранее известны, и все светодиоды сборки будут одинаковой модели и из одной партии. Затем выбирают драйвер.

    На корпусе обязательно указывается диапазон входных напряжений, выходных напряжений, номинальный ток. Исходя из этих параметров выбирают драйвер. Обратите внимание на класс защиты корпуса.

    Для исследовательских задач подходят, например, бескорпусные светодиодные драйверы, такие модели широко представлены сегодня на рынке. Если потребуется поместить изделие в корпус, то корпус может быть изготовлен пользователем самостоятельно.

    Андрей Повный

    Самым оптимальным способом подключения к 220В, 12В является использование стабилизатора тока, светодиодного драйвера. На языке предполагаемого противника пишется «led driver». Добавив к этому запросу желаемую мощность, вы легко найдёте на Aliexpress или Ebay подходящий товар.


    • 1. Особенности китайских
    • 2. Срок службы
    • 3. ЛЕД драйвер на 220В
    • 4. RGB драйвер на 220В
    • 5. Модуль для сборки
    • 6. Драйвер для светодиодных светильников
    • 7. Блок питания для led ленты
    • 8. Led драйвер своими руками
    • 9. Низковольтные
    • 10. Регулировка яркости

    Особенности китайских

    Многие любят покупать на самом большом китайском базаре Aliexpress. цены и ассортимент радуют. LED driver чаще всего выбирают из-за низкой стоимости и хороших характеристик.

    Но с повышением курса доллара покупать у китайцев стало невыгодно, стоимость сравнялась с Российской, при этом отсутствует гарантия и возможность обмена. Для дешевой электроники характеристики бывают всегда завышены. Например, если указана мощность в 50 ватт, в лучшем случае то это максимальная кратковременная мощность, а не постоянная. Номинальная будет 35W — 40W.

    К тому же сильно экономят на начинке, чтобы снизить цену. Кое где не хватает элементов, которые обеспечивают стабильную работу. Применяются самые дешевые комплектующие, с коротким сроком службы и невысокого качества, поэтому процент брака относительно высокий. Как правило, комплектующие работают на пределе своих параметров, без какого либо запаса.

    Если производитель не указан, то ему не надо отвечать за качество и отзыв про его товар не напишут. А один и тот же товар выпускают несколько заводов в разной комплектации. Для хороших изделий должен быть указан бренд, значит он не боится отвечать за качество своей продукции.

    Одним из лучших является бренд MeanWell, который дорожит качеством своих изделий и не выпускает барахло.

    Срок службы

    Как у любого электронного устройства у светодиодного драйвера есть срок службы, который зависит от условий эксплуатации. Фирменные современные светодиоды уже работают до 50-100 тысяч часов, поэтому питание выходит из строя раньше.

    Классификация:

    1. ширпотреб до 20.000ч.;
    2. среднее качество до 50.000ч.;
    3. до 70.000ч. источник питания на качественных японских комплектующих.

    Этот показатель важен при расчёте окупаемости на долгосрочную перспективу. Для бытового пользования хватает ширпотреба. Хотя скупой платит дважды, и в светодиодных прожекторах и светильниках это отлично работает.

    ЛЕД драйвер на 220В

    Современные светодиодные драйвера конструктивно выполняются на ШИМ контроллере, который очень хорошо может стабилизировать ток.

    Основные параметры:

    1. номинальная мощность;
    2. рабочий ток;
    3. количество подключаемых светодиодов;
    4. степень защиты от влаги и пыли
    5. коэффициент мощности;
    6. КПД стабилизатора.

    Корпуса для уличного использования выполняются из металла или ударопрочного пластика. При изготовлении корпуса из алюминия он может выступать в качестве системы охлаждения для электронной начинки. Особенно это актуально при заполнении корпуса компаундом.

    На маркировке часто указывают, сколько светодиодов можно подключить и какой мощности. Это значение может быть не только фиксированным, но и в виде диапазона. Например, возможно от 4 до 7 штук по 1W. Это зависит от конструкции электрической схемы светодиодного драйвера.

    RGB драйвер на 220В

    ..

    Трёхцветные светодиоды RGB отличаются от одноцветных тем, что содержат в одном корпусе кристаллы разных цветов красный, синий, зелёный. Для управления ими каждый цвет необходимо зажигать отдельно. У диодных лент для этого используется RGB контроллер и блок питания.

    Если для RGB светодиода указана мощность 50W, то это общая на всё 3 цвета. Чтобы узнать примерную нагрузку на каждый канал, делим 50W на 3, получим около 17W.

    Кроме мощных led driver есть и на 1W, 3W, 5W, 10W.

    Пульты дистанционного управления (ДУ) бывают 2 типов. С инфракрасным управлением, как у телевизора. С управлением по радиоканалу, ДУ не надо направлять на приёмник сигнала.

    Модуль для сборки

    Если вас интересует лед driver для сборки своими руками светодиодного прожектора или светильника, то можно использовать led driver без корпуса.

    Прежде чем делать led driver 50W своими руками, стоит немного поискать, например есть в каждой диодной лампе. Если у вас есть неисправная лампочка, у которой неисправность в диодах, то можно использовать driver из неё.

    Низковольтные

    Подробно разберем виды низковольтных лед драйверов работающих от напряжения до 40 вольт. Наши китайские братья по разуму предлагают множество вариантов. На базе ШИМ контроллеров производятся стабилизаторы напряжения и стабилизаторы тока. Основное отличие, у модуля с возможностью стабилизации тока на плате находится 2-3 синих регулятора, в виде переменных резисторов.

    В качестве технических характеристик всего модуля указывают параметры ШИМ микросхемы, на которой он собран. Например устаревший но популярный LM2596 по спецификациям держит до 3 Ампер. Но без радиатора он выдержит только 1 Ампер.

    Более современный вариант с улучшенным КПД это ШИМ контроллер XL4015 рассчитанный на 5А. С миниатюрной системой охлаждения может работать до 2,5А.

    Если у вас очень мощные сверхяркие светодиоды, то вам нужен led драйвер для светодиодных светильников. Два радиатора охлаждают диод Шотки и микросхему XL4015. В такой конфигурации она способна работать до 5А с напряжением до 35В. Желательно чтобы он не работал в предельных режимах, это значительно повысить его надежность и срок эксплуатации.

    Если у вас небольшой светильник или карманный прожектор, то вам подойдет миниатюрный стабилизатор напряжения, с током до 1,5А. Входное напряжение от 5 до 23В, выход до 17В.

    Регулировка яркости

    Для регулирования яркости светодиода можно использовать компактные светодиодный диммеры, которые появились недавно. Если его мощности будет недостаточно, то можно поставить диммер побольше. Обычно они работают в двух диапазонах на 12В и 24В.

    Управлять можно с помощью инфракрасного или радиопульта дистанционного управления (ДУ). Они стоят от 100руб за простую модель и от 200руб модель с пультом ДУ. В основном такие пульты используют для диодных лент на 12В. Но его с лёгкостью можно поставить к низковольтному драйверу.

    Диммирование может быть аналоговым в виде крутящейся ручки и цифровым в виде кнопок.